

Annotat3D

Tutorial

Scientific Computing Group (GCC)

November/2019

LNLS is part of the CNPEM an organization certified by the Ministry of Science, Technology, Innovation and Communication (MCTIC).

Address: Rua Giuseppe Máximo Scolfaro, 10.000 - Polo II de Alta Tecnologia - Caixa Postal 6192 – 13083-970

Campinas/SP

Telephone: +55.19.3512.1010 | www.lnls.cnpem.br

http://www.lnls.cnpem.br/

Documentation History

Date Revision Description Author

30/01/2018 1 Version based on Annotat3D 1. Giovanna Antonieti

30/08/2019 2 Version based on Annotat3D 2. Paola R. R. Rosa

03/11/2019 3 Version based on Annotat3D -

DeepSirius

Paola R. R. Rosa

Summary

I. Opening Annotat3D and Loading files 1

II. Menus 2

II. I File 2

II. II Edit 2

II. III View 3

III. Visualization Options 4

IV. Annotation Options 9

V. Segmentation Module and Classification Menu 11

V. I Feature Extraction 12

V. II Superpixels 13

VI. Segmentation 15

VI. I First Segmentation 15

VI. II Loading and editing a previous label 18

VII. Keybord Shortcuts 19

VIII. Deep Learning Menu 19

VIII. I What is Deep Learning 19

VIII. II What you need before using Deep Learning 20

VIII. III Workspace Submenu 20

VIII. IV Dataset Submenu 21

VIII. IV. I Sampling 21

VIII. IV. II Augmentation 25

VIII. V Network Submenu 30

VIII. VI Batch Inference Submenu 35

1

9I. Opening Annotat3D and Loading files

After logging into <<tarsila or ada>> via TurboVNC, open a terminal and type “Annotat3D”.

Alternative paths:

/ddn/GCC/apps/Annotat3D

/ssd/apps/Annotat3D

First, load an image into the application. Select the image in Menu>File>Open Image located

in the upper left corner.

After selecting the option to load the image, a window to select the file will open. At the bottom

of this window you can select the type of image you want to open; you can choose tiff or raw.

● If you select a tiff image, it will load directly

into the application.

● If the selected image is raw it will open a third

window, like the image below, where you

should place the dimensions of the image and

the type of the image.

2

The result should be presented as the data below.

II. Menus

II. I File

Open visualization image: Can be used if you need to open a secondary image that can be used

for visualization only. For instance, one might be interested in segmenting an image in its raw

form but performing visualization/annotation by also considering a treated/filtered version of

the same image, in order to facilitate the process of understanding what is present in the original

image. Obs: all computations are done in the original image that is loaded, so the visualization

image is only considered for display.

If you have already segmented data (see section VI. II), use the other commands to load or

save your label/Superpixel image.

II. II Edit

At edit menu you can undo the previous action.

3

II. III View

Change colormap: Allows visualization of 3D and 2D images in different colormaps:

Grays, Viridis, Fire, Diverging, HSL, HUSL, SingleHue, CubeHelix, Winter, Hot, Ice, Autumn,

Blues, Cool, Greens, Reds, Springs, Summer, LightBlues, Orange, Coolwarm, PuGr, GrBu,

GrBy_d, RdBu, RdYeBuCy.

Change camera: The camera options are:

• 3D Arcball

• 3D Turntable

• 3D Fly

Save view: Sets the current position as the new home position.

Load view: Resets the camera to the home position.

Save view to file/Load view from file: If you export the home

position, you can import it in a new Annotat3D project.

4

III. Visualization Options

Show volume: Generates a 3D volume of your data. Unclick show slices (eye buttons at slices

XY, XZ, YZ) to see the volume. You can set the threshold to show a specific portion of the

volume. The 3D volume will be generated in an orthographic view. For Perspective view click

Shift + drag the mouse upwards while holding the right button.

Note: this method may take a long time to render large images (e.g., greater than

1024x1024x1024).

Ortographic (left) and Perspective view (right)

5

Show label volume: Generates a 3D volume of your label. Unclick show slices (eye buttons at

slices XY, XZ, YZ) to see the volume.

Show markers: This option makes the markers visible.

Use mouse wheel to change slices: When enabled, scroll the mouse wheel at 3D view to change

slices. When disabled, the mouse wheel at 3D view will apply zoom.

6

Show label: Available after the segmentation. This option makes the label visible (toggles the

overlay of your classification).

Show superpixels: Available after the generation of superpixels.

7

Show 3D canvas: If not enabled, only the 2D view will be available.

Show meshes: This option will render only the selected label as a 3D meshes. First you need to

select the label. For this, click Ctrl + Material.

Show bounding boxes: It enables a box that shows the limits of the sample.

8

Clipping Plane: Click on the eye to view the plane and move the left image (3D view) of the

screen to bring the axis to the desired region. When you find the correct position, click on the

lock to secure the axis position.

Tip: If you have more than two labels (e. g. several different cells), use clipping plane to see an

individual material better. For this, select the material (ctrl+shift) and center the material

(Center button , Annotation submenu). Then, remove the planes (click on the eyes) and

configure the clipping plane that best fits to your material.

9

IV. Annotation Options

Plane view: Allows you to change the

annotation plane. Plane stands for clipping

plane.

Selected image: Selects the image that will

be used for visualization. It will only be

activated if you opened a visualization

image. Obs: The segmentation methods do

NOT consider the visualization image in

their algorithms.

Contrast: Adjust the contrast by clicking on the circular button . If you want to undo your

action, your need to set the parameters to original value.

10

- , + , Rename: Use it to remove a label, add a label or modify the name of the selected label.

Erase Mode: Use it to delete markers with left click selection. You can also click Ctrl+z to

undo last marker. If you need to remove an entire marker at time, click on it with the right

mouse button.

You can also click: Edit > Undo

Extend Label: Instead of selecting the label from the menu, this option allows the label to be

extended from its initial click. That is, if one clicks on the image where it is classified as "A"

and drags the mouse, the whole marker will correspond to "A".

[For Correction of previous classifier and annotation]

i) Sequential Labeling: Each click creates a different label.

11

ii) Merge Labels: Puts together two labels based on the first label.

Radius: Determines the size of the brush.

Position button : Allows you to modify the position on 3D (rotation) and 2D (translation)

canvas via drag and drop.

Center button : Centers the visualization ortho-slices on the clicked location. Click on the

position that you want to center in 2D view and it will center the planes on the 3D view. If you

want to put your axis in the material center, select Ctrl+Shift+material.

Material button : Selects the label clicked by the user on the annotation canvas.

Painting button : Activates scribble drawing mode.

V. Segmentation Module and Classification Menu

Before defining the labels and adding the respective

markers, you need to select Generate Superpixels and

then Apply. After the first classification, there is no need

to Generate Superpixels again, except if you change the

classifier parameters. If you want to save your superpixel

classification to use it later (after you exit the software),

click on: File > Save Superpixel Image, otherwise you’ll have to generate it again when you

enter the software.

Note: The superpixels should be adjusted to fit their boundaries corresponding to the edge of

the objects in the image in order to give a good classification.

12

Preview: Should be used for larger images (e.g., greater than 1024x1024x1024), especially

when a great number of filters have been selected for computation. Preview computes feature

extraction and classification for the current slide and a few others before/after it.

To change the superpixel classification, go to:

Classification > Change Classifier Parameter

You will see the following table.

V. I Feature Extraction

Enable filter options for image processing. The filters are used to enrich the image information

for machine learning-based image segmentation. They tend to capture different properties of

the materials in order to facilitate their separation during segmentation. For instance, Membrane

Projections filter improves classification of membrane-like structures.. Some of these filters are

directly related to Multi-scale Filtering Windows (MFW), where every number of adjacencies

is important to the final calculation. Here is the definition of these filters:

13

● FFT Gauss (Fast Fourier Transform Gauss): The Fast Fourier Transform (FFT) is an

algorithm to compute the Fourier coefficients of a finite sequence. In this case it performs n

individual convolutions with Gaussian kernels with the normal n variations of MFW. That

means: ↑ radius diameter ↓ blurred the image becomes until the pixels are homogeneous.

● None (Original Img).

● FFT Gabor: It determines if there is any specific frequency content in the image in specific

directions in a localized region around the point or region of analysis. In the spatial domain,

it is a Gaussian kernel function modulated by a sinusoidal plane wave.

● FFT DoG (Fast Fourier Transform Difference of Gaussians): Calculates two Gaussian

blur images from the original image and subtracts one from the other.

● Sobel: Calculates an approximation of the gradient of the image intensity at each pixel.

● Membrane Projections: Enhances membrane-like structures of the image through

directional filtering.

● Minimum, Maximum, Variance, Average, Median: The pixels within a radius of MFW

pixels from the target pixel are subjected to the selected operation and the target pixel is set

to that value.

● LBP - Local Binary Pattern: It is a texture operator that tries to capture how are the

neighborhoods allocated. It labels the pixels of an image by thresholding the neighborhood

of each pixel and considers the result as a binary number.

Multi-scale Filtering Windows: The associated values indicate the radius of square windows

considered around each pixel to compute the above filter extraction methods, or some value

proportional to that. For instance, a sequence of "2, 4, 6" will be used by filter "Minimum" to

compute the minimum pixel intensity in filtering windows with sizes of 5x5, 9x9, and 13x13

pixels, respectively (note that the *radius* of the windows are given).

Feature selection: This parameter allows an evaluation / score of the feature importance to the

classification. The procedure consists of a comparison of how much accuracy is lost when the

feature is removed, based on the results with the annotated data, so, it is recomputed with each

new annotation. Therefore, the features contributing less than the submitted threshold value,

e.g. 0.01, will be disregarded in the rating.

Note: The value is presented as percentage. If an error popup appears, the threshold set is too

high and must be lowered.

V. II Superpixels

Waterpixels (3D) or Slic:

• Waterpixels/Slic Seed Spacing: It determines the space between the seeds. The higher the

number, less superpixels are generated.

• Waterpixels/Slic Compactness: Increasing the number will make the superpixels more

regular and will make them lose edge information.

14

Note: SLIC (values between 0 e 1); Waterpixels (Powers of 10, e.g., 100, 500, 1000, 10000,

20000).

Superpixel Feature Pooling: Defines how the characteristic vector will be computed.

Characteristics about a local region (i.e., a super pixel) are aggregated by means of a function

that reduces image information from one resource vector per pixel to a superpixel image vector.

Classification:

Classifier: There are two available: RandomForest and SVM.

• The Random Forest Classifier is an ensemble method that computes several random decision

trees that partitions your training data (i.e., the selected superpixels) into the different

classes/labels. It offers faster training times and robust classification.

• The Linear SVM classifier attempts to find hyperplanes that separate the training samples in

the feature space. It may be faster than RandomForest, but requires the selection of parameter

C to improve classification results (C is given in powers of 10 such as 0.001, 0.01, 0.1, 1.0,

10.0, 100.0, etc.). Higher values of C (e.g, greater than 1.0) makes the error margin around

15

hyperplane stricter and therefore classification during training should have less errors.

However, this may make the classifier harder to generalize. The user should try different

values based on a fixed set of markers to determine the best value for C.

VI. Segmentation

VI. I First Segmentation

In order to segment your image, you should follow these steps:

1. Select Generate Superpixels. Change the classifier parameters until it gives a good

adherence to the borders of the objects. One should ideally attempt to strike a balance

between boundary adherence and compactness/number of superpixels.

2. Add and rename the labels and add the respective markers

16

3. Select Apply.

4. Alter the filters in Feature Extraction and Multi-scale Filtering Windows in order to

see if the segmentation quality improves.

5. Keep classifying until you get a good segmentation.

6. Click on File > Save label to save the result of your segmentation. To save your

current classifier, annotation and training data, go to Menu>Classification>Save

Classifier/Save Annotation/Save training data. At the same place you can load your

previous classifier and annotation.

17

In order to save, here are some definitions:

Label

• Label is the output of your segmentation.

• You can edit later the label if you load:

o Just the label: In this case, the annotation starts from zero. So the quality of

annotation might not be great.

o Label + Annotation: With this, you can modify you label in a better way. When

you train, the annotation protects what you already segmented.

• Note: With these options, you are just correcting the generated label, there isn’t a

classifier involved on the process.

Annotation

• It is the marked on pixels.

• It is only useful when it is related to the original image, where the annotation was made.

• It can be used for:

o Changes on the classifier – Because it is just the markers, there is no feature

applied, therefore, you can set the new features (new classification).

Classifier

• It predicts the class of given data points.

• You can save it for later use on other images, but the parameters won’t be changed.

• Apply the classifier in other images only if you are sure that it is the final version.

Training data

• It is actual data set used to train the classifier.

• It has the features extracted for the markers, therefore, it is the filter result applied to

image.

• If you load the training data and apply more training (new annotation), you can update

your classifier.

• This can be used for any image.

Therefore, if you load the Training Data or the Annotation, there is no need to load the

Classifier.

18

VI. II Loading and editing a previous label

Load Label and Annotation

Click on File>Open Label. Select Yes for Load Label Editing module.

Then, go to Classification>Change Classifier Parameters.

Change Label Editing Parameters:

Background Seed Spacing: Sets the background superpixels size. The higher the value, the

larger the superpixels. which would avoid for example background selection as part of a cell

that I marked with sequential labeling, extend labels or merge labels.

Compactness: Increasing the number will make the superpixels more regular and will make

them lose edge information.

Beta: Defines the extension of generated label in the marked region. If you increase the

parameter, the segmentation will cover a larger area than the annotation. If it decreases, the

generated label will have an area closer to the one annotated by the user.

Pre-Segmentation Weight: Determines how much the current segmentation matches the

original. Increasing it will result in fewer segmentation deviations from the previous one.

Pre-object Seed Spacing Percentage: Indicates the grid of segmentation to spread the seeds

that the program uses to classify them as labels. E.g. If it is at 0.25, it means that the grid is

dividing that region by 4.

Obs: After modifying your previous label, don’t forget to save it and the annotation.

19

Annotation options:

After loading a label and annotation, Sequential labeling and Merge will appear as an option

(See section IV).

VII. Keybord Shortcuts

Command Execution

L Show labels

S Show superpixels

K Show markers

Click Material + Ctrl View a specific material

Click Material + Ctrl +

Shift
Bring the axes to the geometric center of the material

Ctrl+z
Undo previous action (you must click apply to count the

withdrawal on the label)

Shift
Keep it selected so you can drag the left image with your mouse

(translation).

VIII. Deep Learning Menu

VIII. I What is Deep Learning

A supervised classifier includes a set of machine learning strategies that aim to learn,

given examples of data separated in groups, a function F that better separates new data,

according to the given examples. In Deep Learning, these groups are learned with the help of

neural networks, which aim to learn a function that maps the original data to such groups. In

the image segmentation domain, we try to map each voxel of the image to a label that identifies

it. In other words, deep learning on Annotat3D is a type of machine learning that trains a

classifier to perform an image classification in order to obtain a label image.

In the figure bellow, you can see an example of input data (CT image) and the label

generated after the deep learning.

20

Image example taken from paper "Reliability and validity of the new VikingSlice software for computed

tomography body composition analysis" (2019).

VIII. II What you need before using Deep Learning

First, you’ll need a set with original (grayscale) and segmented (label) images with the

same dimensions. Those images don’t need to have the same name, only to be in the same order

in the list of images when creating a dataset. But we advise renaming all of them with initial

name in order to facilitate the visualization, e. g. tomography1_100x100x100_8bit_gray.tif and

tomography1_100x100x100_8bit_label.tif. This organized data will be used to train with

predefined parameters, allowing the computer to learn by itself by recognizing patterns in

various processing layers.

This is the Deep Learning Menu:

VIII. III Workspace Submenu

In the Workspace Submenu you can set the Workspace location. Everything will be

saved in this folder, so it’s better to create this folder inside the storage folder (i.e., DDN).

21

VIII. IV Dataset Submenu

VIII. IV. I Sampling

Data: You can add files in tiff or raw extensions. This is the grayscale image.

Note: In case of raw images, it is important to point that, in order to infer the image properties,

the file must contain necessary information (size and bitdepth), for example:

this_is_my_file_200x200x100_16bit.raw

Label: Keep in mind that the label must have enough visual field in order to understand the

shape and texture of your object.

Tip: Depending on the complexity of your sample, it might be interesting to create a classifier

to separate background and sample and another one to identify differences inside your sample.

22

Attention: Overfitting is a problem that can be originated from a limited dataset, in which there

is a small amount of data, in which there is a small amount of data with good annotation.

Because there isn’t a lot of data for training, the network will be biased by the previous

information. In another words, it becomes overly accurate for the input data (low error), but it

is not capable of achieving a proper result if you apply it to another image. The major issue is that

it learns a log about the outliers in your data, being unable to segment another image with high

quality.

Example: Segmentation of a curve, where the black dots are the input image (different from

the original). In blue, the result of overfitting (considers every outlier), in blue, the result of

good segmentation. If you apply the network into your original data and it gets a good result,

but it is a disaster on another images, it might be a sign of overfitting.

This is a diagram showing overfitting of a classifier. While the black line fits the data well, the

green line is overfit1.

1Image extracted from: <https://commons.wikimedia.org/wiki/File:Overfitting.svg> Access: 30/10/19.

23

Weight map: It is used when you want to make the classifier understand that it must focus on

specific areas. The weight map is an image whose voxel intensities make the network training

penalize the classification error proportionally to the value of the voxel. Hence, higher values

will force the network to improve classification for certain voxels. When certain

materials/objects are small, for instance, it might be interesting to provide a weight image with

higher values for those objects. There is no limit to the values in the weight map, although

assigning weights in the range of [0, 255] may force the network to completely ignore regions

(i.e., voxel values of 0) or penalize errors for some voxels up to 255 times more. If you do not

provide a weight image, the network training will assume that the image has uniform weight

equal to 1.0.

Note: The weight values must be positive.

Example 1: There is an image with 5% of the volume of the sample corresponding to a label

A. The rest of the image is distributed in labels B, 40%, C, 35% and D, 20%. Because of the

low probability of a certain are to be correspondent to label A with uniform weight, there is a

higher chance for the training to mis classify it as B, C or D. That’s why in this case it would

be useful to use a mask where the A regions have a higher weight. This situation is known as

Class unbalance (when classes have too low percentages).

Example 2: If you have two very similar patterns for two different labels, it might be useful to

attribute different weights for each object.

24

Sampling: You must define:

• Class – The number of label classes.

• Strategy – Uniform. It means equal probability of extraction/selection of patches for training.

It randomly extracts patches over an uniform distribution, but that doesn't mean it's a perfect

grid.

• Sample size – The network always works with a small crop of the image henceforth denoted

patch (pink cube), so this parameter sets the number of patches on the input image (blue cubes).

The more you cover the image (higher sample size), the slower the training, but possibly results

are more accurate. Patches may overlap.

 2

Example of an uneven grid: This is just an example to clarify what a sample and patch size are.

In this image, the sample size is 9 with random and uniform distribution. In this situation there

is an overlap and each subimage (in red) is a Patch. Every square has the same probability of

being chosen for the training.

2 Image extracted from: <https://niftynet.readthedocs.io/en/dev/window_sizes.html> Access: 30/10/19.

25

Example of perfect grid: Sample size: 9; patch is the red square. This isn’t how the patch

distribution occur.

• Patch size – The training uses all of the patches, but at a random order. It defines how the

network shall go through the input data. The size should be bigger than the smallest object

that you want to observe. In another words, you are setting the field of view for the training.

o Note: The input at V-net (network) has a patch size of 64x64x64. And the

input at U-net 2D is 224x224.

After this, click on Augmentation.

VIII. IV. II Augmentation

Data augmentation strategies are able to generate artificial data by applying small deformations

on the original data. The main purpose is to generate slightly different data, increasing the

number of labeled data when scarce, and creating more challenging problems for the classifier,

leading to a more generalized network. The following parameters are directly related to shape

and are applied into the original image.

Example images below were extracted from <https://github.com/aleju/imgaug>.

Vertical and Horizontal flip: Enabling it allows the network to understand that different

patterns of rotation exists.

Example: You want to train in order to segment dog’s profiles. You insert a dataset with dog’s

profiles to the left, but you know for certain that they could also be turned to the right, but not

upside down. In this case you would habilitate the horizontal flip, but not the vertical one.

26

27

Contrast: If you need to segment images with different contrast patterns in relation to the

dataset, is better to enable this option. It will make the network to learn not only one pattern of

contrast, but a whole new range of possible contrast situations.

Example: You put a dataset with a girl with a specific color, but in your segmented images this

girl appears in different colors and contrast. You want the network to correctly identify the girl

in the images regardless of the contrast changes.

Gaussian Blur: The higher the σ value, the higher the smoothing. In this parameter, you

basic is destroying the texture in order to make a better classification of shape.

28

Elastic transformation: It determines if in your training it will accept variations in shape

(distortion) and texture.

• Alpha stands for the deformation intensity.

• Sigma stands for the quantity of random noise over deformation to change the pixel

intensity value (randomness over deformation).

29

With Sigma 0.2

With Sigma 0.5

Once everything is set, click “OK” and the

following popup shall appear. Click on ok and then

close the dataset window.

30

VIII. V Network Submenu

Network: It sets the type of neural architecture of the network that will be used for training.

The options are:

• U-net – 2D and 3D: It is the best option for 2D training and works faster for 3D

training.

• V-net – 3D: It usually gives better results, but it demands more computationally.

Dataset: Load the dataset created on the previous step (see section VIII. II).

31

Settings: It determines the GPUs that will be used.

In order to use the correct GPUs available, check it out using the Terminal. Type:

watch -n 0.1 nvidia-smi

You will see the following information:

32

Check for the GPUs with low memory usage (red rectangle).

Training: In this part, you will set parameters that will directly affect the GPU memory usage

and the quality and velocity of training.

You must imagine that basically the training is trying to determine a function that can predict

labels based on a dataset. Ideally, this function must obtain the lowest possible error, also known

as the optimum condition (global minimum). Optimization is carried out by a variation of the

gradient descent method in order to find a minimum point of the error function.

33

• Batch size: defines how many image patches will be considered at the same time during

network training. It is related to GPU performance.

o The higher the Batch Size, the higher the smoothness of the error function since more

image patches are considered during optimization, thereby reducing the likelihood of

optimization falling into a local minimum.

o When you have a lot of incorrect annotation, it might be better to increase the batch size.

• Iterations: This parameter determines how many times the network will test. Each new

interaction means an update in you training, giving new results (a new matrix is updated by

combining values because of the update in the error function).

o Tip: Do a first training with few iterations (1000) just to see if the other parameters seem

to make sense. Then, increase the iterations in order to give better results.

• Learning rate: It is a gradient descent parameter considered because the shape of the error

function and its global minima are not known. Hence, it is necessary to determine a suitable

learning rate to find the best approximation for it (i.e., trying to find a satisfactory local

minimum that may or may not coincide with a global minimum).The ↑ higher the learning

rate, ↑ the bigger the step taken at each point, ↑ therefore, it is a faster training.

o If you end your training with a relatively constant error, e.g. it’s taking a very long time

to decrease the value, you probably should increase the learning rate (increase the step

between points).

34

o On the other hand, when your loss is constant or varies a lot, it is probably better to

decrease the learning rate.

o The problem about very small steps might be that it will be trapped into a local minimum

that is not the lowest point, because it stops on the first that it founds.

• Loss: The loss function is responsible for comparing the output provided by the network

during training with your ground truth. It essentially measures the error that is obtained during

optimization to model the classification function. Different loss functions may be more

suitable to different data:

o Cross entropy – It compares the dataset and the other images on a voxel to voxel basis.

It gives more importance to texture.

o Dice – It overlaps the dataset and the other images. It is a summarized comparison. It

gives more importance to shape.

o Cross entropy + Dice – Takes both in consideration.

35

Once you are done with the settings, start the training by clicking in Train (you are starting a

training from zero).

Export if you are satisfied with the error result, it works as a checkpoint because you can retrain

it. If you aren’t satisfied, change the parameters and then click on Finetune. If you trained one

network and then clicked on Train, it will start all over again.

VIII. VI Batch Inference Submenu

Inference: With your network set, you may now present a new image for classification.

36

First, select the network created (see section VIII. III). Then, add the Input images. And select

an Output folder.

Click on Settings to continue.

Settings:

• System: It determines the GPUs that will be used.

37

Borders: Volume Padding and Patch Border

Here we have an example of an input image3 (left). As described at Sample Size topic, the

image has an uniform distribution of patches (middle and right). The following parameters are

used to set the input image in order to prevent the presence of artifacts at the final image.

Volume Padding – Adds a 0-valued frame around the input image to ensure that boundary

effects to classification being done patchwise be mitigated.

Patch Border – Similar to Volume Padding, this parameter controls the amount of overlap

between patches sampled over the target image for inference. Lower values increase

classification speed, at the cost of edge artifacts. In another words, determines how much edge

will be thrown away when making the inference. We throw it away because of an edge effect

on each patch inside the image.

Left: Volume Padding example. Right: Patch Border example.

3 Image extracted from: <https://niftynet.readthedocs.io/en/dev/window_sizes.html> Access: 30/10/19.

38

Batch:

