fbpx
Português
IR1 Beamline

The IR1 beamline is an endstation dedicated to infrared nanospectroscopy (nano-FTIR) in the range of mid-IR. Its main purpose is the analysis of chemical-optical properties of condensed matter in the nanoscale. In similar fashion to established infrared spectroscopy (FTIR), the nano-FTIR allows for identification and characterization of a chemical compound by means of its vibrational response, however, with nanoscale spatial resolution. Moreover, nano-FTIR is a technique based on near-field optics and, therefore, can be applied to the optical analysis in the sub-diffractional regime of plasmonic and photonic materials.

To overcome the diffraction limit of light, this experimental endstation uses the broadband synchrotron IR beam extracted from the LNLS storage ring as the light source for the experiment Scattering Near-Field Optical Microscopy (s-SNOM). In this experiment a metal coated atomic force microscopy (AFM) tip acts as an antenna for the light confinement at the its apex, creating a new source that no longer depends on the incident light wavelength but it is defined by the shape of the AFM probe, allowing for a spatial resolution of c.a. 25 nm.

The specifications of IR1 beamline of LNLS allows for multidisciplinary studies in Physics, Chemistry and Biology, in particular those studies in which the local chemical information is the central point in the research.

Potential applications are: Opto-electronics and vibrational properties of 2D materials, chemical analysis of sub-micron molecular domains in polymer blends, nano-drugs delivery, single cell chemistry, vibrational analysis of archeological micro-artefacts, new nanostructured materials for energy harvesting and conversion.

CONTACT & STAFF

For more information on this beamline, contact us.

EXPERIMENTAL TECHNIQUES

The IR1 beamline is exclusively dedicated to the Scattering Near Field Optical Microscopy technique (s-SNOM) which associates infrared microscopy (μ-FTIR) and atomic force microscopy (AFM). To learn more about the techniques’ limitations and requirements (sample, environment, etc.) contact the beamline coordinator before submitting your proposal.

SCATTERING SCANNING NEAR-FIELD OPTICAL MICROSCOPY (S-SNOM)

scattering Scanning Near-Field Optical Microscopy (s-SNOM) is a nanoscopy technique which combines Atomic Force Microscopy (AFM) and optics for producing a tip-enhanced optical or infrared (IR) probe with spatial resolution beyond the diffraction limit of light. In the case of the IR1 beamline, the broadband synchrotron IR beam is focused on a metallic AFM tip (nano-antenna) generating a broadband source smaller than 40 nm. The interaction of the IR nano-source with the sample surface yields broadband images (scanning mode) or 40 nm pixel point spectrum.

Recent publications:

B. Pollard et al. (2016). Infrared Vibrational Nanospectroscopy by Self-Referenced Interferometry. Nano Letters, vol. 16, 55–61. doi: 10.1021/acs.nanolett.5b02730

I. Barcelos et al. (2015). Graphene/h-BN Plasmon-phonon coupling and plasmon delocalization observed by infrared nano-spectroscopy. Nanoscale, vol.7, 11620–11625. doi: 10.1039/C5NR01056J

T. Moreno et al. (2013). Optical layouts for large infrared beamline opening angles. Journal of Physics: Conference Series, 425(14), 142003. doi:10.1088/1742-6596/425/14/142003

LAYOUT & OPTICAL ELEMENTS

Element Type Position [m] Description
SOURCE Bending Magnet 0.0 Bending Magnet D03 exit A (4°), 1.67 T, 30 mrad x 80 mrad
M1 Plane, 6 mm slot 2.5 Gold coated, aluminum substrate
M2 Tangential cone-shaped 3.1 Gold coated, aluminum substrate
M3 Tangential cylinder 3.7 Gold coated, aluminum substrate
CVD Diamond window 7.0 20 mm diameter by 500 µm diamond window by Chemical Vapor Deposition
M4 Tangential cylinder 7.5 Gold coated, aluminum substrate
M5 Tangential cylinder 7.9 Gold coated, aluminum substrate

PARAMETERS

Parameter Value Condition
Energy range [cm-1] 3000 – 700 Broadband radiation limited by beamsplitter transmission and detector sensitivity
Energy resolution [cm-1] Up to 3.3 Limitted by the interferometer travel
Beam size at sample [nm, FWHM] < 40 nm Near-field spot defined by the size of the s-SNOM tip
Flux at first optical element [Phot/s/0.1%bw] 2.0 x 1013 at 1000 cm-1 (10 µm)
AFM scanning stage (maximum travel) [µm] ± 45
AFM scanning stage minimum step [nm] 5

INSTRUMENTATION

Instrument Type Model Manufacturer Specifications
s-SNOM Near-field Optical Microscope NeaSnom NeaSpec
MCT Detector Single element Mercury-Cadmium-Telluride (MCT) KLD-0.1-J1208L 750 cm-1 to 3000 cm-1, 100 µm element size, DC to 1 MHz BW, LN2 cooled Kolmar Technologies
MCT Detector Single element MCT IRA-20-00103 650 cm-1 to 3000 cm-1, 50 µm element size, 500 Hz to 2 MHz BW, LN2 cooled Infrared Associates Inc.
Si Detector Single element Silicon detector PDA36A-EC 350 nm to 1100 nm, 3.6 mm x 3.6 mm element size, DC to 10 MHz BW , air cooled Thorlabs
InGaAs Detector  Single element Indium-Gallium-Arsenide (InGaAs) detector  PDA10D-EC PDA10D-EC Thorlabs
Lock-in amplifier 2 input channels digital lock-in amplifier HF2LI DC to 50 MHz, 210 MSa/s, USB 2.0 high-speed, 480 Mbit/s Zurich Instruments
Visible laser HeNe laser HNL150L 15 mW HeNe (633 nm) laser Thorlabs

CONTROL AND DATA ACQUISITION

Data acquisition is performed directly in the native software of the NeaSnom microscope developed by Neaspec. S-SNOM image files are compatible with the free program Gwyddion (http://gwyddion.net) and point spectra, linescans and spectral images are postprocessed using Mathematica® routines developed by the IR1 team.

HOW TO CITE THIS FACILITY

Users are required to acknowledge the use of LNLS facilities in any paper, conference presentation, thesis and any other published material that uses data obtained in the execution of their proposal.

OTHER REFERENCES

Scattering Scanning Near-field Optical Microscopy (s-SNOM)

Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Trans. A. Math. Phys. Eng. Sci. 362, 787–805 (2004).

Huth, F., Schnell, M., Wittborn, J., Ocelic, N. & Hillenbrand, R. Infrared-spectroscopic nanoimaging with a thermal source. Mater. 10, 352–6 (2011).

Huth, F. et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 12, 3973–8 (2012).

Muller, E. A., Pollard, B. & Raschke, M. B. Infrared Chemical Nano-Imaging: Accessing Structure, Coupling, and Dynamics on Molecular Length Scales. Phys. Chem. Lett. 6, 1275–1284 (2015).

 Infrared Spectroscopy Espectroscopia de Infravermelho (FTIR)

Griffiths, P. R. & de Haseth, J. a. Fourier Transform Infrared Spectrometry. Chemical Analysis: A Series of Monographs on Analytical Chemistr and Its Applications (2007). doi:10.1002/047010631X

Smith, Brian C. “Fourier transform infrared spectroscopy.” CRC, Boca Raton, FL(1996).

Atomic Force Microscopy Microscopia de Força Atômica

Eaton, P. & West, P. Atomic Force Microscopy. (Oxford University Press, 2010). doi:10.1093/acprof:oso/9780199570454.001.0001

PUBLICATIONS

IR1

Scientific publications produced with data obtained at the facilities of this beamline, and published in journals indexed by the Web of Science, are listed below.

Attention Users: Given the importance of the previous scientific results to the overall proposal evaluation process, users are strongly advised to check and update their publication record at the SAU Online website.


Codeço, C. F. S. ;Barcelos, I. D.;Mello, S. L. de A. ;Penello, G. M. ;Magnani, B. da F.. Superficial Si nanostructure synthesis by low-energy ion-beam-induced phase separation, Applied Surface Science, v.601, p. 154190, 2022. DOI:10.1016/j.apsusc.2022.154190


Oliveira, R. de;Guallichico, L. A. G. ;Policarpo, E.;Cadore, A. R.;Freitas, R. O.;Silva, F. M. C. da ;Teixeira, V. C.;Magalhães-Paniago, R.;Chacham, H.;Matos, M. J. de S.;Malachias, A.;Krambrock, K.;Barcelos, I. D.. High throughput investigation of an emergent and naturally abundant 2D material: Clinochlore, Applied Surface Science, v.599, p. 153959, 2022. DOI:10.1016/j.apsusc.2022.153959


Grasseschi, D.;Bahamon, D. A.;Maia, F. C. B.;Barcelos, I. D.;Freitas, R. O.;Matos, C. J. S. de. Van der Waals materials as dielectric layers for tailoring the near-field photonic response of surfaces, Optics Express, v.30, n.1, p.255-264, 2022. DOI:10.1364/OE.445066


Nepel, T. C. de M.; Anchieta, C. G. ; Cremasco, L. F. ; Sousa, B. P. ; Miranda, A. N. de ; Oliveira, L. C. C. B.; Francisco, B. A. B.; Júlio, J. P. de O.; Maia, F. C. B.; Freitas, R. O.; Rodella, C. B.; Maciel Filho, R.; Doubek, G.. In Situ Infrared Micro and Nanospectroscopy for Discharge Chemical Composition Investigation of Non-Aqueous Lithium–Air Cells, Advanced Energy Materials, v.11, n.45, p. 2101884, 2021. DOI:10.1002/aenm.202101884


Freitas, R. O.; Cernescu, A. ; Engdahl, A. ; Paulus, A.; Levandoski, J. E. ; Martinsson, I. ; Hebisch, E. ; Sandt, C. ; Gouras, G. K. ; Prinz, C. N. ; Deierborg, T.; Borondics, F.; Klementieva, O.. Nano-Infrared Imaging of Primary Neurons, Cells, v.10, n.10, p.2559, 2021. DOI:10.3390/cells10102559


Barcelos, I. D.; Canassa, T. A. ; Mayer, R. A.; Feres, F. H. ; Oliveira, E. G. de ; Gonçalves, A-. M. B. ; Freitas, R. O.; Maia, F. C. B.; Alves, D. C. B.. Ultrabroadband Nanocavity of Hyperbolic Phonon-Polaritons in 1D-Like a-MoO3, ACS Photonics, v.8, n.10, p.3017-3026, 2021. DOI:10.1021/acsphotonics.1c00955


Nagaoka, D. A. ; Grasseschi, D.; Domingues, S. H.. Can reduced graphene oxide look like few-layer pristine graphene?, Diamond and Related Materials, v.12o, p.108616, 2021. DOI:10.1016/j.diamond.2021.108616