CONTACT & STAFF
For more information on this beamline, contact us.
The XRD2 beamline an experimental station dedicated to X-ray Diffraction techniques in the hard x-rays range (3 to 17 keV). Several kinds of measurements can be carried out in this beamline, both in monocrystalline or policrystalline samples and thin films with Grazing-Incidence Diffraction (GID), Grazing-Incidence Small-Angle X-ray Scattering (GISAXS) and in-plane diffraction. Applications include crystallographic characterization of monocrystals at low temperatures (2K-400K), microscopic magnetism, orbital ordering studies, and characterization of thin films, quantum dots and heterostructures.
XRD2 source is a 1.67T bending magnet. The diffraction beamline has a versatile 6+2 circles diffractometer allowing to perform a wide range of diffraction/scattering techniques on different sample environments like: furnaces (< 1000°C), cryojet (> 85 K), humidity (or gas flux) chambers and more recently gas/liquid interfaces on a Langmuir trough. The optics is composed by a Rh-coated vertical-focusing mirror and a sagittal-focusing Si 111 double-crystal monochromator. It provides a 0.5 mm x 1.5 mm focus at the sample position with tunable monochromatic beam ranging from 5 to 15 keV.
Some of the usual experiments are multiple x-ray diffraction of single crystals, x-ray reflectometry, reciprocal space mapping of thin films (epitaxial, polycrystalline, textured), grazing incidence small angle x-ray scattering (GISAXS) and diffraction (GID) in supported nanoparticles or gas/liquid interfaces. Phase identification and depth profile of metallurgical alloys.
For more information on this beamline, contact us.
The following experimental techniques and setups are available to users in this beamline. To learn more about the techniques’ limitations and requirements (sample, environment, etc.) contact the beamline coordinator before submitting your proposal.
Element | Type | Position [m] | Description |
---|---|---|---|
SRC | Bending Magnet | 0.000 | Bending Magnet D10 exit A (4°), 1.67T, 0.87mm x 0.17mm |
FE | Front-end | 4.750 | – |
S1 | White Beam Slits | 5.995 | – |
M1 | Cylindrical Vertical Focusing Mirror | 7.048 | Rh coated, θ = 20mrad |
DCM | Double Crystal Monochromator | 8.749 | Water-cooled Si (111), Sagitally bent |
S2 | Monochromatic Beam Slits | 14.690 | – |
S3 | Sample Slits | 17.100 | – |
ES | Experimental Station | 17.478 | – |
Parameter | Value | Condition |
---|---|---|
Energy range [keV] | 5-15 | – |
Energy resolution [ΔE/E] | 8 x 10-4 | – |
Beam size at sample [mm2, FWHM] | 0.5×1.5 | 8 keV, vertical and horizontal focus at sample |
Beam divergence at sample [mrad2, FWHM] | 0.6×5 | 8 keV, vertical and horizontal focus at sample |
Flux density at sample [ph/s/mm2/100mA] | 5.26 x 1010 | 8 keV at sample |
Instrument | Type | Model | Manufacturer | Specifications |
---|---|---|---|---|
Diffractometer | 6+2 circles | Huber 92784 | Circles: 4 sample (open eulerian cradle); 2 detector; +2 crystal analyzer; +1 incident angle (±5°) | Huber |
Furnaces | – | F300C | 300 to 570K Temp. Rate: up to 20K/min Temp. control: 0.1K | LNLS in-house development |
Furnaces | – | F1000 | 300 to 1270K Temp. Rate: up to 20K/min Temp. control: 1K | LNLS in-house development |
Cryogenic | – | Cryojet5 | 120 to 450K (shared instrument) | Oxford |
Detector | Punctual | Cyberstarx1000 | φ=30mm, Ti-doped NaI (NaI(TI)), 106 | – |
Detector | Linear | Mythen 1k | Total 1280 pixel with 50 µm each, 2kHz frame rate (shared instrument) | Dectris |
Detector | Linear | Mythen 1k | Total 1280 pixel with 50 µm each, 2kHz frame rate (shared instrument) | Dectris |
Detector | Area | Pilatus 100k | 172×172 µm2 pixel area, 487×192 pixel matrix | Dectris |
Detector | Area | Pilatus 300k | 172×172 µm2 pixel area, 487×619 pixel matrix (shared instrument) | Dectris |
Langmuir trough | Liquid surface analysis | 602A | 62500 mm2, 350 ml, 500mm x 125mm x 3mm | Nima |
The beamline is controlled by the use of EPICS (Experimental Physics and Industrial Control System) running on a PXI from National Instruments. All data acquisition and instrumentation use are done using Psic mode on SPEC (software for instrumentation control and data acquisition in X-ray diffraction experiments from Certified Science Software). Some graphical interfaces and beamline devices can be controlled on CSS (Control System Studio).
Users are required to acknowledge the use of LNLS facilities in any paper, conference presentation, thesis and any other published material that uses data obtained in the execution of their proposal.
Scientific publications produced with data obtained at the facilities of this beamline, and published in journals indexed by the Web of Science, are listed below.
Arias, J. J. R. ;Mota, I. C. ;Albuquerque, L. S. ;Dahmouche, K.;Marques, M. de F. V.. A GIWAXS study of crystallization in annealed conjugated polymers presenting technological interest for organic solar cell applications, Journal of Materials Science-Materials in Electronics, v.33, p.1838–1850, 2022. DOI:10.1007/s10854-021-07383-3
Prakash, D. J. ;Chen, Y.;Debasu, M. L. ;Savage, D. E.;Tangpatjaroen, C. ;Deneke, C. F.;Malachias, A.;Alfieri, A. D. ;Elleuch, O. ;Lekhal, K. ;Szlufarska, I. ;Evans, P. G. ;Cavallo, F.. Reconfiguration of Amorphous Complex Oxides: A Route to a Broad Range of Assembly Phenomena, Hybrid Materials, and Novel Functionalities, Small, v.18, n.1, p.2105424, 2022. DOI:10.1002/smll.202105424
Neckel, I. T.;Silva, F. M. C. da ;Guedes, E. B.;Dias, C. T. dos S. ;Soares, M. M.;Costa, C. A. R.;Mori, T. J. A.;Björling, A. ;Zakharov, A.;Tolentino, H. C. N.. Unveiling Center-Type Topological Defects on Rosettes of Lead Zirconate Titanate Associated to Oxygen Vacancies, Annalen Der Physik, v.534, n.2, p.2100219, 2022. DOI:10.1002/andp.202100219
Salvador, A. J. ;Neckel, I. T.;Graff, I. L.;Mosca, D. H.. Chemical disorder in polycrystalline Ni2MnGa thin films, Journal of Alloys and Compounds, v. 898, p.162970, 2022. DOI:10.1016/j.jallcom.2021.162970
Costa, D. da S.;Kellermann, G.;Craievich, A. F.;Montoro, L. A.;Oliveira, C. K. B. Q. M.;Afonso, C. R. M.;Huck-Iriart, C.;Giovanetti, L. J.;Requejo, F. G.;Zanella, I. G. ;Mazzaro, I.;Szameitat, E. S. ;Cardoso, R. P.. Highly oriented NiSi2@Si thin-nanocomposite produced by solid state diffusion: Morphological and crystallographic characterization, Surfaces and Interfaces, v.29, p.101763, 2022. DOI:10.1016/j.surfin.2022.101763
Faria, M. V. G. ;Soares, E. A.;Antoniazzi, I. ;Paniago, R.M.;Miwa, R. H.;Lopes, J. M. J.;Malachias, A.;Oliveira Jr., M. H.. Experimental evidence of a mixed amorphous-crystalline graphene/SiC interface due to oxygen-intercalation, Surfaces and Interfaces, v.30, p. 101906, 2022. DOI:10.1016/j.surfin.2022.101906
Silva, R. M. L. ;Albano, L. G. S.;Vello, T. P.;Araújo, W. W. R. ;Camargo, D. H. S.;Palermo, L. D.;Corrêa, C. C.;Wöll, C. ;Bof Bufon, C. C.. Surface-Supported Metal-Organic Framework as Low-Dielectric-Constant Thin Films for Novel Hybrid Electronics, Advanced Electronic Materials, v.8, n.9, p.2200175, 2022. DOI:10.1002/aelm.202200175