fbpx
Português
Science
With open facilities, the Brazilian Synchrotron Light Laboratory (LNLS) annually welcomes about 1200 Brazilian and foreign researchers, committed to more than 400 studies that result in approximately 200 articles published in scientific journals. Check out below some of the many investigations that have benefited from LNLS facilities.

September 11th, 2018

Research opens perspective for treatment of several diseases tailored to the needs of each patient

From the biochemical point of view, we are a complex set of interconnected chemical reactions. The molecules that make up our bodies are in constant transformation, and this is what makes it possible for us to get energy from food, to regenerate damage to our tissues, and to synthesize the compounds necessary for life.

These modifications usually occur with the aid of other molecules called enzymes, which promote and accelerate chemical reactions without being consumed during the process.

August 24th, 2018

Results open new perspectives for the study of neurodevelopment and neurodegenerative diseases

A comprehensive understanding of the brain, its development, and eventual degeneration, depends on the assessment of neuronal number, spatial organization, and connectivity. However, the study of the brain architecture at the level of individual cells is still a major challenge in neuroscience.

August 22nd, 2018

Research investigates cheaper alternatives to attenuate the emission of toxic gases

Despite the recent advances in the production of electric vehicles, and the future prospect of hydrogen-powered engines, the replacement of the fleet will take several years. In the meantime, the number of vehicles continues to grow. For that reason, not only public policies must be appropriate to this reality, but also innovative technologies to reduce the release of pollutants into the atmosphere must be developed.

August 16th, 2018

First experimental report of a special optical layout dedicated to correct typical aberrations derived from large extraction ports in IR beamlines

Infrared nanospectroscopy represents a major breakthrough in chemical analysis since it allows the identification of nanomaterials via their natural (label free) vibrational signatures. Classically powered by laser sources, the experiment called scattering Scanning Near-field Optical Microscopy (s-SNOM) has become a standard tool for investigations of chemical and optical properties of materials beyond the diffraction limit of light.

August 9th, 2018

New thermoelectric material shows great potential for wearable devices, embedded to clothing and accessories, and other flexible technologies

One of the biggest challenges for the advancement of wearable devices, embedded to clothing and accessories, which would be capable, for example, of continuously measuring and transmitting vital sign data, is the availability of power without the need for large batteries.

July 31st, 2018

Research investigates the control of electric polarization in ferroelectric ceramics by the incidence of light

Materials called ferroelectrics have the property of maintaining a spontaneous electric polarization, reversible by the application of an external electric field. These materials are additionally piezoelectric – inducing the accumulation of electrical charges by the application of mechanical stress – and pyroelectric – inducing a temporary voltage by heating or cooling. These properties make ferroelectric materials useful in a variety of applications, such as mechanical vibration sensors, medical ultrasound machines, or fire sensors.

July 20th, 2018

Research develops new material for controlled release of nitric oxide

The healing of a cutaneous wounds follows a rather complex process. A variety of conditions, including diseases such as diabetes, can cause some of the many factors involved in healing to not work properly. Because of that, the tissue is unable to regenerate and the wound becomes a chronic condition.

June 14th, 2018

Research investigates the formation of distinct phases of bismuth-based molecule in topological insulators

The development of faster and more efficient electronic devices involves the understanding of exotic properties of matter at the nanoscale. One of the classes of materials that present characteristics of interest for the electronics industry are the so-called topological insulators.

Topological insulators are materials only a few atoms thick that behave as insulators in the inner atomic layers, but as conductors in the surface. The electrical conductivity of these superficial layers is remarkably resistant to the atomic disorder caused by the presence of impurities, which is not the case in other materials.

May 28th, 2018

Research develops new method for dyeing with natural dyes

For thousands of years humanity has used substances extracted from plants, insects, soil and rocks to give color to fabrics, ceramics and other products. However, the use of these natural dyes declined with the invention of synthetic dyes in the mid-nineteenth century. Nowadays, synthetic dyes are used in a variety of industries, from textiles to cosmetics, and both production use of these substances can lead to environmental problems if they are not properly degraded or removed from industrial effluents.

May 11th, 2018

Successful in-vitro test shows potential for new treatment

Vitiligo is a disease characterized by loss of skin pigmentation due to the death of cells called melanocytes, responsible for melanin production. This disease afflicts up to 1% of the world population and current treatments are not effective and exhibit several side effects.

According to the most accepted theory, the disease results from an autoimmune reaction. It is known that one of the proteins involved in melanin synthesis, called TyRP-1, also functions as a melanocyte differentiation antigen, marking the melanocytes to be attacked by the immune system. Therefore, a possible strategy to thwart the progression of the disease is to prevent the production of TyRP-1.