November 17th, 2014
These results reveal that it is possible to tune the emission color of these compounds by changing the chemical environment of the $SbO_4$ matrix.
Lanthanide-containing materials comprise a wide range of scientifically and technologically important compounds. They are chemically designed and produced by using different routes depending on the final target: single crystals, glasses, organic-inorganic hybrids, and ceramics. A huge variety of properties can be obtained depending on the choice of the lanthanide, the host matrices and crystalline structures in which they are inserted, either as a dopant or as self-activated element. Known for possessing rich luminescence properties, lanthanides-containing materials have been used in many technological applications, such as laser materials, flat panel displays, cathode ray tubes, up-conversion devices, white-light emitting diodes, X-Ray scintillators, phosphors, and emitters.
August 16th, 2011
Researchers at LNLS selected silver nanoparticles of different sizes and evaluated the effect of these nanoparticles on different bacterial strains.
Silver nanoparticles have an antibacterial effect and therefore have potential biomedical applications. Bacteriological tests have revealed that this effect depends on the size of the nanoparticles and the type of microorganism. The challenge consists in performing selective fractionation to identify the most effective nanoparticles for each type of microorganism.