September 1st, 2015
Research can lead to new treatments against envenoming
In traditional and indigenous communities, plants are used for the treatment of a wide variety of diseases and are discovered throughout the years by trial and error, or, more precisely, by live and death.
The active substances in those plants have drawn the interest of the medical and scientific communities, especially for the treatment of neglected tropical diseases, including snakebites for which the mortality rate is higher than that of dengue fever, cholera or Chagas disease.
August 5th, 2015
The results, by CNPEM researchers, were published in the journal “Scientific Reports” from Nature Group.
August 5th, 2015
The control processes shown here open new paths to pattern transport from exclusion to preconcentration of charged molecules by selecting the appropriate polymerization strategy and polymerization parameters.
Polymer-mesoporous hybrid materials are an exciting class of materials for a wide range of applications, from controlled release to heterogeneous catalysis or solar cells. The charge and isoelectric point of a membrane play a key role in its mesopore accessibility, and through the control of these features, mesoporous materials are able to regulate transport of charged species. Generating hybrid mesoporous materials by surface-initiated polymerization, thus designing specifically transporting membranes, is a fascinating path toward mimicking controlled transport in nature.
August 4th, 2015
This immediately suggests the hypothesis that, since very few T4SS have been characterized to date, T4SS-mediated bacterial killing may not be restricted to the Xanthomonadaceae family, and may in fact be a more widespread phenomenon.
Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002 [1]. Bacterial cells are continuously interacting with other bacterial and eukaryotic cells in a battle for survival. These interactions have driven the evolution of several mechanisms by which they quickly deploy proteinaceous and nucleic acid effectors that manipulate the behaviour of the target organism, often resulting in growth inhibition or death.
August 3rd, 2015
These observations open up possibilities for the study of protein folding and provide a new interpretation to explain the nature of the cooperative behavior of proteins during folding reactions.
It is known that proteins are far from equilibrium during folding reactions, and they undergo a wide range of conformational states to reach the global folding minimum. Various physical and chemical strategies, such as the use of high temperature, high pressure, protonation, altered ionic strength, and harsh de- naturants, are commonly used to disturb folding species to promote the formation of rarely observed folding intermediates.
November 20th, 2014
The studies of the size, structure and magnetic properties of the multifunctional brick-like $ \rm Ag@Fe_3O_4$ NPs obtained reveal them as possible candidates for advanced medical purposes.
Nanotechnology presents a very fast growth owing to a vast number of applications. In medicine, for example, it is possible to envisage a strong improvement in the efficiency of the magnetic resonance imaging or in the development of non-conventional diagnostics or therapies. The pace of development of the area is strongly dependent on the improvement of synthesis routes, which would allow producing, in a controlled way, new materials capable to act in the intracellular environment.
November 18th, 2014
The authors have demonstrated the effective biological activity of a noncomplex nanomaterial against susceptible and antibiotic-resistant bacteria without significant cytotoxicity.
Infections and several diseases caused by resistant micro-organisms in which the conventional treatment often fails result in prolonged illness and greater risks of death. The inappropriate and irrational use of antibiotics and antimicrobial drugs can lead to resistant microorganisms and provide them with favorable conditions to emerge, spread, and persist. According to the World Health Organization (WHO), a high percentage of hospital-acquired infections are caused by highly resistant bacteria and 440 000 new cases of multidrug-resistant tuberculosis emerge annually, causing at least 150 000 deaths.
November 17th, 2014
These results reveal that it is possible to tune the emission color of these compounds by changing the chemical environment of the $SbO_4$ matrix.
Lanthanide-containing materials comprise a wide range of scientifically and technologically important compounds. They are chemically designed and produced by using different routes depending on the final target: single crystals, glasses, organic-inorganic hybrids, and ceramics. A huge variety of properties can be obtained depending on the choice of the lanthanide, the host matrices and crystalline structures in which they are inserted, either as a dopant or as self-activated element. Known for possessing rich luminescence properties, lanthanides-containing materials have been used in many technological applications, such as laser materials, flat panel displays, cathode ray tubes, up-conversion devices, white-light emitting diodes, X-Ray scintillators, phosphors, and emitters.
August 16th, 2011
Researchers at LNLS selected silver nanoparticles of different sizes and evaluated the effect of these nanoparticles on different bacterial strains.
Silver nanoparticles have an antibacterial effect and therefore have potential biomedical applications. Bacteriological tests have revealed that this effect depends on the size of the nanoparticles and the type of microorganism. The challenge consists in performing selective fractionation to identify the most effective nanoparticles for each type of microorganism.