CONTATO & EQUIPE
Para mais informações sobre a linha de luz, entre em contato.
A linha de luz IR1 é uma estação experimental dedicada à nano-espectroscopia de infravermelho (nano-FTIR) na faixa de infravermelho médio (mid-IR). Seu principal propósito é a análise de propriedades opto-químicas da matéria condensada na nano-escala. De forma análoga à estabelecida espectroscopia de infravermelho (FTIR), a nano-FTIR é capaz de identificar e caracterizar um composto químico por meio de sua resposta vibracional, no entanto, com uma resolução espacial nanométrica. Além disso, por ser uma técnica baseada em óptica de campo próximo, a nano-FTIR pode ser aplicada em estudos ópticos em regime sub-difracional como plasmônica e fotônica.
Para operar em regime de espectroscopia além do limite de difração, a estação experimental IR1 utiliza o feixe de banda larga de IR extraído do acelerador síncrotron do LNLS como fonte de luz no experimento de microscopia óptica de campo próximo do tipo espalhamento (s-SNOM). Neste experimento uma ponta metálica de microscopia de força atômica (AFM) é utilizada como antena no confinamento da luz incidente, criando assim uma nova fonte de dimensões comparáveis ao raio da ponta de AFM (resolução espacial de ~25 nm).
Com tais especificações a linha IR1 do LNLS viabiliza estudos multidisciplinares em Física, Química e Biologia os quais clamam por informações opto-moleculares na nano-escala.
Aplicações potenciais incluem: propriedades opto-eletrônicas e vibracionais de materiais bidimensionais, análise química de domínios moleculares sub-micrométricos de blendas poliméricas, eficiência de entrega de drogas em tecidos/fragmentos biológicos, química de células isoladas, resposta vibracional de micro-artefatos arqueológicos, nano-cristais para sistemas de conversão de energia.
Para mais informações sobre a linha de luz, entre em contato.
A linha IR1 é exclusivamente dedicada à técnica de Microscopia Óptica de Campo Próximo do tipo Espalhamento (s-SNOM) a qual associa microscopia de infravermelho (µ-FTIR) e microscopia de força atômica (AFM). Para saber mais sobre as limitações e requerimentos das técnicas, contate o coordenador da linha de luz antes de submeter sua proposta.
scattering Scanning Near-Field Optical Microscopy (s-SNOM) is a nanoscopy technique which combines Atomic Force Microscopy (AFM) and optics for producing a tip-enhanced optical or infrared (IR) probe with spatial resolution beyond the diffraction limit of light. In the case of the IR1 beamline, the broadband synchrotron IR beam is focused on a metallic AFM tip (nano-antenna) generating a broadband source smaller than 40 nm. The interaction of the IR nano-source with the sample surface yields broadband images (scanning mode) or 40 nm pixel point spectrum.
Recent publications:
B. Pollard et al. (2016). Infrared Vibrational Nanospectroscopy by Self-Referenced Interferometry. Nano Letters, vol. 16, 55–61. doi: 10.1021/acs.nanolett.5b02730
I. Barcelos et al. (2015). Graphene/h-BN Plasmon-phonon coupling and plasmon delocalization observed by infrared nano-spectroscopy. Nanoscale, vol.7, 11620–11625. doi: 10.1039/C5NR01056J
T. Moreno et al. (2013). Optical layouts for large infrared beamline opening angles. Journal of Physics: Conference Series, 425(14), 142003. doi:10.1088/1742-6596/425/14/142003
Elemento | Tipo | Posição [m] | Descrição |
---|---|---|---|
SOURCE | Bending Magnet | 0.0 | Bending Magnet D03 exit A (4°), 1.67 T, 30 mrad x 80 mrad |
M1 | Plane, 6 mm slot | 2.5 | Gold coated, aluminum substrate |
M2 | Tangential cone-shaped | 3.1 | Gold coated, aluminum substrate |
M3 | Tangential cylinder | 3.7 | Gold coated, aluminum substrate |
CVD | Diamond window | 7.0 | 20 mm diameter by 500 µm diamond window by Chemical Vapor Deposition |
M4 | Tangential cylinder | 7.5 | Gold coated, aluminum substrate |
M5 | Tangential cylinder | 7.9 | Gold coated, aluminum substrate |
Parâmetro | Valor | Condição |
---|---|---|
Energy range [cm-1] | 3000 – 700 | Broadband radiation limited by beamsplitter transmission and detector sensitivity |
Energy resolution [cm-1] | Up to 3.3 | Limitted by the interferometer travel |
Beam size at sample [nm, FWHM] | < 40 nm | Near-field spot defined by the size of the s-SNOM tip |
Flux at first optical element [Phot/s/0.1%bw] | 2.0 x 1013 | at 1000 cm-1 (10 µm) |
AFM scanning stage (maximum travel) [µm] | ± 45 | – |
AFM scanning stage minimum step [nm] | 5 | – |
Instrumento | Tipo | Modelo | Fabricante | Especificações |
---|---|---|---|---|
s-SNOM | Near-field Optical Microscope | NeaSnom | – | NeaSpec |
MCT Detector | Single element Mercury-Cadmium-Telluride (MCT) | KLD-0.1-J1208L | 750 cm-1 to 3000 cm-1, 100 µm element size, DC to 1 MHz BW, LN2 cooled | Kolmar Technologies |
MCT Detector | Single element MCT | IRA-20-00103 | 650 cm-1 to 3000 cm-1, 50 µm element size, 500 Hz to 2 MHz BW, LN2 cooled | Infrared Associates Inc. |
Si Detector | Single element Silicon detector | PDA36A-EC | 350 nm to 1100 nm, 3.6 mm x 3.6 mm element size, DC to 10 MHz BW , air cooled | Thorlabs |
InGaAs Detector | Single element Indium-Gallium-Arsenide (InGaAs) detector | PDA10D-EC | PDA10D-EC | Thorlabs |
Lock-in amplifier | 2 input channels digital lock-in amplifier | HF2LI | DC to 50 MHz, 210 MSa/s, USB 2.0 high-speed, 480 Mbit/s | Zurich Instruments |
Visible laser | HeNe laser | HNL150L | 15 mW HeNe (633 nm) laser | Thorlabs |
A aquisição de dados é realizada diretamente no programa nativo do microscópio NeaSnom desenvolvido pela empresa Neaspec. Arquivos de imagens s-SNOM são compatíveis com o programa livre Gwyddion (http://gwyddion.net) e espectros pontuais, linescans e imagens espectrais são pós-processados usando rotinas em Mathematica® desenvolvidas pela equipe da Linha de Luz IR1.
Usuários devem declarar a utilização das instalações do LNLS em qualquer publicação, como artigos, apresentações em conferências, tese ou qualquer outro material publicado que utilize dados obtidos na realização de sua proposta.
Microscopia óptica de campo próximo do tipo espalhamento (s-SNOM)
Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Trans. A. Math. Phys. Eng. Sci. 362, 787–805 (2004).
Huth, F., Schnell, M., Wittborn, J., Ocelic, N. & Hillenbrand, R. Infrared-spectroscopic nanoimaging with a thermal source. Mater. 10, 352–6 (2011).
Huth, F. et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 12, 3973–8 (2012).
Muller, E. A., Pollard, B. & Raschke, M. B. Infrared Chemical Nano-Imaging: Accessing Structure, Coupling, and Dynamics on Molecular Length Scales. Phys. Chem. Lett. 6, 1275–1284 (2015).
Espectroscopia de Infravermelho (FTIR)
Griffiths, P. R. & de Haseth, J. a. Fourier Transform Infrared Spectrometry. Chemical Analysis: A Series of Monographs on Analytical Chemistr and Its Applications (2007). doi:10.1002/047010631X
Smith, Brian C. “Fourier transform infrared spectroscopy.” CRC, Boca Raton, FL(1996).
Microscopia de Força Atômica (AFM)
Eaton, P. & West, P. Atomic Force Microscopy. (Oxford University Press, 2010). doi:10.1093/acprof:oso/9780199570454.001.0001
Abaixo está disponível a lista de artigos científicos produzidos com dados obtidos nas instalações desta Linha de Luz e publicados em periódicos indexados pela base de dados Web of Science.
Codeço, C. F. S. ;Barcelos, I. D.;Mello, S. L. de A. ;Penello, G. M. ;Magnani, B. da F.. Superficial Si nanostructure synthesis by low-energy ion-beam-induced phase separation, Applied Surface Science, v.601, p. 154190, 2022. DOI:10.1016/j.apsusc.2022.154190
Oliveira, R. de;Guallichico, L. A. G. ;Policarpo, E.;Cadore, A. R.;Freitas, R. O.;Silva, F. M. C. da ;Teixeira, V. C.;Magalhães-Paniago, R.;Chacham, H.;Matos, M. J. de S.;Malachias, A.;Krambrock, K.;Barcelos, I. D.. High throughput investigation of an emergent and naturally abundant 2D material: Clinochlore, Applied Surface Science, v.599, p. 153959, 2022. DOI:10.1016/j.apsusc.2022.153959
Grasseschi, D.;Bahamon, D. A.;Maia, F. C. B.;Barcelos, I. D.;Freitas, R. O.;Matos, C. J. S. de. Van der Waals materials as dielectric layers for tailoring the near-field photonic response of surfaces, Optics Express, v.30, n.1, p.255-264, 2022. DOI:10.1364/OE.445066
Nepel, T. C. de M.; Anchieta, C. G. ; Cremasco, L. F. ; Sousa, B. P. ; Miranda, A. N. de ; Oliveira, L. C. C. B.; Francisco, B. A. B.; Júlio, J. P. de O.; Maia, F. C. B.; Freitas, R. O.; Rodella, C. B.; Maciel Filho, R.; Doubek, G.. In Situ Infrared Micro and Nanospectroscopy for Discharge Chemical Composition Investigation of Non-Aqueous Lithium–Air Cells, Advanced Energy Materials, v.11, n.45, p. 2101884, 2021. DOI:10.1002/aenm.202101884
Freitas, R. O.; Cernescu, A. ; Engdahl, A. ; Paulus, A.; Levandoski, J. E. ; Martinsson, I. ; Hebisch, E. ; Sandt, C. ; Gouras, G. K. ; Prinz, C. N. ; Deierborg, T.; Borondics, F.; Klementieva, O.. Nano-Infrared Imaging of Primary Neurons, Cells, v.10, n.10, p.2559, 2021. DOI:10.3390/cells10102559
Barcelos, I. D.; Canassa, T. A. ; Mayer, R. A.; Feres, F. H. ; Oliveira, E. G. de ; Gonçalves, A-. M. B. ; Freitas, R. O.; Maia, F. C. B.; Alves, D. C. B.. Ultrabroadband Nanocavity of Hyperbolic Phonon-Polaritons in 1D-Like a-MoO3, ACS Photonics, v.8, n.10, p.3017-3026, 2021. DOI:10.1021/acsphotonics.1c00955
Nagaoka, D. A. ; Grasseschi, D.; Domingues, S. H.. Can reduced graphene oxide look like few-layer pristine graphene?, Diamond and Related Materials, v.12o, p.108616, 2021. DOI:10.1016/j.diamond.2021.108616