Português
Science
With open facilities, the Brazilian Synchrotron Light Laboratory (LNLS) annually welcomes about 1200 Brazilian and foreign researchers, committed to more than 400 studies that result in approximately 200 articles published in scientific journals. Check out below some of the many investigations that have benefited from LNLS facilities.

January 19th, 2016

Although always on our minds – but not so much on our heads –, there is still plenty to be known about the structure and composition of human hair.

Although always on our minds - but not so much on our heads –, there is still plenty to be known about the structure and composition of human hair. Far from a simple scientific curiosity, the proper knowledge about it allow us, for example, to research and develop new and more efficient cosmetic products for the hair treatment and care.

November 23rd, 2015

Scientists develop quick method for quantifying ascorbic acid in solutions.

Brazil is world leader in the production and exportation of orange juice. According to the Ministry of Agriculture, the country is responsible for 30% of the world’s annual harvest but 60% of the world’s annual juice production, 90% of which is exported.

November 11th, 2015

Researches look for new materials for extreme ultra-violet lithography.

Cellphones, computers and other omnipresent portable electronic devices owe their existence to the continuous miniaturization of electronic circuits, which begun with the invention of the transistor, in 1947. Responsible for turning on and off or amplifying an electrical current, the transistors replaced the big and fragile vacuum tubes that made the first digital computers occupy whole rooms of even whole buildings.

October 16th, 2015

Researchers look for substitutes extracted from sunflower oil

The ingestion of lipids, oils and fats, provides essential ingredients to our metabolism. The worries about several cardiovascular diseases caused by the excessive consumption of saturated fats and cholesterol from animal origin, though, have prompted the development of alternative sources of lipids.

October 5th, 2015

Learning about its optical properties

Graphene – a thin membrane formed by one or two atom-thick layers of carbon – is considered one of the future building blocks of nanotechnology. Gaining tremendous attention in the last years, graphene and graphene-based material combinations such as graphene/boron nitride find potential applications in optical and opto-electronic devices.

September 1st, 2015

Research can lead to new treatments against envenoming

In traditional and indigenous communities, plants are used for the treatment of a wide variety of diseases and are discovered throughout the years by trial and error, or, more precisely, by live and death.

The active substances in those plants have drawn the interest of the medical and scientific communities, especially for the treatment of neglected tropical diseases, including snakebites for which the mortality rate is higher than that of dengue fever, cholera or Chagas disease.

August 5th, 2015

The results, by CNPEM researchers, were published in the journal “Scientific Reports” from Nature Group.

A low-cost way to produce nanostructured diamonds from graphite was developed by researchers from the Brazilian Synchrotron Light Laboratory (LNLS), LNNano (Brazilian Nanotechnology National Laboratory) and Ipen (Nuclear and Energy Research Institute). They used ultrafast laser in order to generate a shock wave, which was able to achieve the pressure and temperature levels necessary to synthesize diamond.

August 5th, 2015

The control processes shown here open new paths to pattern transport from exclusion to preconcentration of charged molecules by selecting the appropriate polymerization strategy and polymerization parameters.

Polymer-mesoporous hybrid materials are an exciting class of materials for a wide range of applications, from controlled release to heterogeneous catalysis or solar cells. The charge and isoelectric point of a membrane play a key role in its mesopore accessibility, and through the control of these features, mesoporous materials are able to regulate transport of charged species. Generating hybrid mesoporous materials by surface-initiated polymerization, thus designing specifically transporting membranes, is a fascinating path toward mimicking controlled transport in nature.

August 4th, 2015

This immediately suggests the hypothesis that, since very few T4SS have been characterized to date, T4SS-mediated bacterial killing may not be restricted to the Xanthomonadaceae family, and may in fact be a more widespread phenomenon.

Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002 [1]. Bacterial cells are continuously interacting with other bacterial and eukaryotic cells in a battle for survival. These interactions have driven the evolution of several mechanisms by which they quickly deploy proteinaceous and nucleic acid effectors that manipulate the behaviour of the target organism, often resulting in growth inhibition or death.

August 3rd, 2015

These observations open up possibilities for the study of protein folding and provide a new interpretation to explain the nature of the cooperative behavior of proteins during folding reactions.

It is known that proteins are far from equilibrium during folding reactions, and they undergo a wide range of conformational states to reach the global folding minimum. Various physical and chemical strategies, such as the use of high temperature, high pressure, protonation, altered ionic strength, and harsh de- naturants, are commonly used to disturb folding species to promote the formation of rarely observed folding intermediates.